Project

# Title Team Members TA Documents Sponsor
27 Oxygen Delivery Robot
Honorable Mention
Aidan Dunican
Nazar Kalyniouk
Rutvik Sayankar
Selva Subramaniam design_document1.pdf
design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation1.pptx
proposal1.pdf
proposal2.pdf
# Oxygen Delivery Robot

Team Members:
- Rutvik Sayankar (rutviks2)
- Aidan Dunican (dunican2)
- Nazar Kalyniouk (nazark2)

# Problem

Children's interstitial and diffuse lung disease (ChILD) is a collection of diseases or disorders. These diseases cause a thickening of the interstitium (the tissue that extends throughout the lungs) due to scarring, inflammation, or fluid buildup. This eventually affects a patient’s ability to breathe and distribute enough oxygen to the blood.

Numerous children experience the impact of this situation, requiring supplemental oxygen for their daily activities. It hampers the mobility and freedom of young infants, diminishing their growth and confidence. Moreover, parents face an increased burden, not only caring for their child but also having to be directly involved in managing the oxygen tank as their child moves around.


# Solution

Given the absence of relevant solutions in the current market, our project aims to ease the challenges faced by parents and provide the freedom for young children to explore their surroundings. As a proof of concept for an affordable solution, we propose a three-wheeled omnidirectional mobile robot capable of supporting filled oxygen tanks in the size range of M-2 to M-9, weighing 1 - 6kg (2.2 - 13.2 lbs) respectively (when full). Due to time constraints in the class and the objective to demonstrate the feasibility of a low-cost device, we plan to construct a robot at a ~50% scale of the proposed solution. Consequently, our robot will handle simulated weights/tanks with weights ranging from 0.5 - 3 kg (1.1 - 6.6 lbs).

The robot will have a three-wheeled omni-wheel drive train, incorporating two localization subsystems to ensure redundancy and enhance child safety. The first subsystem focuses on the drivetrain and chassis of the robot, while the second subsystem utilizes ultra-wideband (UWB) transceivers for triangulating the child's location relative to the robot in indoor environments. As for the final subsystem, we intend to use a camera connected to a Raspberry Pi and leverage OpenCV to improve directional accuracy in tracking the child.

As part of the design, we intend to create a PCB in the form of a Raspberry Pi hat, facilitating convenient access to information generated by our computer vision system. The PCB will incorporate essential components for motor control, with an STM microcontroller serving as the project's central processing unit. This microcontroller will manage the drivetrain, analyze UWB localization data, and execute corresponding actions based on the information obtained.

# Solution Components

## Subsystem 1: Drivetrain and Chassis

This subsystem encompasses the drive train for the 3 omni-wheel robot, featuring the use of 3 H-Bridges (L298N - each IC has two H-bridges therefore we plan to incorporate all the hardware such that we may switch to a 4 omni-wheel based drive train if need be) and 3 AndyMark 245 RPM 12V Gearmotors equipped with 2 Channel Encoders. The microcontroller will control the H-bridges. The 3 omni-wheel drive system facilitates zero-degree turning, simplifying the robot's design and reducing costs by minimizing the number of wheels. An omni-wheel is characterized by outer rollers that spin freely about axes in the plane of the wheel, enabling sideways sliding while the wheel propels forward or backward without slip. Alongside the drivetrain, the chassis will incorporate 3 HC-SR04 Ultrasonic sensors (or three bumper-style limit switches - like a Roomba), providing a redundant system to detect potential obstacles in the robot's path.

## Subsystem 2: UWB Localization
This subsystem suggests implementing a module based on the DW1000 Ultra-Wideband (UWB) transceiver IC, similar to the technology found in Apple AirTags. We opt for UWB over Bluetooth due to its significantly superior accuracy, attributed to UWB's precise distance-based approach using time-of-flight (ToF) rather than meer signal strength as in Bluetooth.

This project will require three transceiver ICs, with two acting as "anchors" fixed on the robot. The distance to the third transceiver (referred to as the "tag") will always be calculated relative to the anchors. With the transceivers we are currently considering, at full transmit power, they have to be at least 18" apart to report the range. At minimum power, they work when they are at least 10 inches. For the "tag," we plan to create a compact PCB containing the transceiver, a small coin battery, and other essential components to ensure proper transceiver operation. This device can be attached to a child's shirt using Velcro.

## Subsystem 3: Computer Vision
This subsystem involves using the OpenCV library on a Raspberry Pi equipped with a camera. By employing pre-trained models, we aim to enhance the reliability and directional accuracy of tracking a young child. The plan is to perform all camera-related processing on the Raspberry Pi and subsequently translate the information into a directional command for the robot if necessary. Given that most common STM chips feature I2C buses, we plan to communicate between the Raspberry Pi and our microcontroller through this bus.

## Division of Work:
Given that we already have a 3 omni wheel robot, it is a little bit smaller than our 50% scale but it allows us to immediately begin work on UWB localization and computer vision until a new iteration can be made. Simultaneously, we'll reconfigure the drive train to ensure compatibility with the additional systems we plan to implement, and the ability to move the desired weight. To streamline the process, we'll allocate specific tasks to individual group members – one focusing on UWB, another on Computer Vision, and the third on the drivetrain. This division of work will allow parallel progress on the different aspects of the project.

# Criterion For Success

Omni-wheel drivetrain that can drive in a specified direction.
Close-range object detection system working (can detect objects inside the path of travel).
UWB Localization down to an accuracy of < 1m.

## Current considerations

We are currently in discussion with Greg at the machine shop about switching to a four-wheeled omni-wheel drivetrain due to the increased weight capacity and integrity of the chassis. To address the safety concerns of this particular project, we are planning to implement the following safety measures:
- Limit robot max speed to <5 MPH
- Using Empty Tanks/ simulated weights. At NO point ever will we be working with compressed oxygen. Our goal is just to prove that we can build a robot that can follow a small human.
- We are planning to work extensively to design the base of the robot to be bottom-heavy & wide to prevent the tipping hazard.

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.