Project

# Title Team Members TA Documents Sponsor
63 Bluetooth Heater (Burner)
Navin Ranganathan
Shaunak Fadnis
Varun Kowdle
Zicheng Ma design_document2.pdf
final_paper1.pdf
presentation2.pdf
proposal2.pdf
# Bluetooth Heater (Burner)
# Team Members:

- Varun Kowdle (vkowdle2)
- Shaunak Fadnis (sfadnis2)
- Navin Ranganathan (navinr2)

# Problem
Each day, millions of people drink warm coffee, tea, or soup. However, one common challenge faced is maintaining the ideal temperature over time, especially in busy environments or during extended periods of consumption. Moreover, traditional methods like reheating in microwaves can degrade the quality of the drink or food, while passive insulating containers often fail to maintain the desired temperature for long. The repeated process of reheating can be time-consuming and energy-inefficient, making it a less than ideal solution for both home and office settings. This results to a compromised experience, as the taste derived from hot beverages and soups is significantly tied to their warmth.

# Solution

To address this issue, we propose to make a heating pad with bluetooth capabilities so that users can adjust temperature to three settings. This allows users to change the heating pad to their ideal temperature to the requirements of the beverage or soup. Integration of bluetooth allows for a convenient and remote control, enabling users to adjust settings directly from their smartphones. More importantly, we want to make sure that the pad is durable and energy efficient to support user needs.

# Solution Components:

## Subsystem 1
App (Bluetooth Connection) :
A bluetooth module will be used to communicate with a personal device to control the device. The user can set the temperature/heating amount for the pad(s), within a restricted amount. It will also provide feedback on what is at what temperature, and how long it has been (with possible warnings for a quality drop if it has been long enough.
Components:
Bluetooth Module (ex: RNBD451 - Microchip Bluetooth 5.2 Module)
## Subsystem 2
Heating Pad:
We would have a resistive heating element similar to a coil that would heat a pad for people to place cups, bowls, etc.. Using a temperature sensor we will feed data back to our control unit that also communicates with the app to see if any changes have been made.
Components:
Temperature Sensor
Heating Element Options:
Peltier Module (for adding cooling)
Inductive Coil

## Subsystem 3
Power Management:
Ensures the device operates efficiently, minimizing energy consumption while providing adequate power to the heating element. Components: Battery (if portable): A high-capacity, rechargeable battery that supports extended use on a single charge.Techniques such as automatic shutdown after a period of inactivity, or adaptive temperature control to reduce power usage when the target temperature is maintained. Similarly, bluetooth module to adjust temperature based on user preference

# Criterion For Success
The device must heat beverages or soups to the selected temperature with high accuracy and maintain the temperature within a narrow margin of error. Moreover, the device should maintain stable Bluetooth connectivity within a typical range, allowing for seamless communication between the heating pad and the user's mobile device.Likewise, the heating pad should use energy efficiently, reducing the need for frequent recharging (if battery-powered) or minimizing electrical consumption (if corded). Lastly, we must incorporate safety features to prevent overheating of both the pad and the beverage/soup, ensuring the device is safe to touch and does not pose a risk of burning the user or damaging surfaces.

Environmental Sensing for Firefighters

Andri Teneqexhi, Lauren White, Hyun Yi

Environmental Sensing for Firefighters

Featured Project

Hyun Yi, Lauren White, and Andri Teneqexhi earned the Instructor's Award in the Fall of 2013 for their work on the Environmental Sensing for Firefighters.

"Engineering is all about solving real life problems and using the solutions to improve the lives of others. ECE 445 allows you to actually delve deeper into what this really means by providing students the chance to undergo the engineering design process. This requires taking all of the theoretical knowledge, lab experiences, and ultimately, everything that you have ever learned in life, and applying it to your project. Though, there is structure to the course and deadlines in place to measure your team's progress, the actual design, implementation, and success of your project is all determined by you. Unlike any other course that I have taken, I've gained an appreciation for the utilization and benefits of external resources, unforeseen scheduling delays, delegating tasks, and most importantly, teamwork. I consider ECE 445 to be a crash course into real life engineering and a guide to become a successful engineer." -- Lauren White