Project

# Title Team Members TA Documents Sponsor
18 Schedulable Autonomous Fish Feeder
Brandon MacIntosh
Colby Steber
Jeremy Richardson
Sanjana Pingali design_document1.pdf
final_paper1.pdf
grading_sheet1.pdf
photo1.jpg
photo2.png
presentation1.pptx
proposal1.pdf
video
Team Members:
- Colby Steber (csteber2)
- Jeremy Richardson (jrr13)
- Brandon MacIntosh (bm53)
# Problem
Fish feeders currently on the market are limited on how much convenience they give fish owners when they are away from their tank. If you want to feed your fish at a certain time, you usually have to set a timer for 12 or 24 hours in advance to feed them. There is also no reassurance that your fish is actually being fed and eating. Owners just have to assume that the machine is working as intended. This poses a major problem when gone for extended periods of time, such as winter break.
# Solution
With our fish feeder, the user will not only be able to feed their fish from any location by using a mobile app, but they will also be able to schedule the exact times they want the feeder to dispense food, allowing them to customize their feeding times. In addition, the feeder will have a sensor that will detect when the food container rotates and send a notification to the user so they can ensure that their fish was fed. The feeder will be plugged into the wall to make certain that the feeder will work for extended periods of time. If the power goes out or if the feeder is not being supplied with AC power from the wall, it would switch to battery power.

This solution would require a PCB, microcontroller with wireless transmitter, rotating motor, sensors, mobile app, and a power system. Other components could be added, such as a camera, water quality sensor, and indicator LEDs.
# Solution Components
## Subsystem 1: Microcontroller
This microcontroller will implement the processing of the data along with triggering the circuit to engage the motor, communicate via WiFi to connect to an app, and take input from sensors such as the feeder engage sensor. There will also be external ports that connect to the microcontroller for additions of other sensors, such as a possible water quality sensor or camera.

Possible Microcontroller: ESP32
## Subsystem 2: Rotating Motor and Sensor
This subsystem will consist of a motor that will be connected to the main PCB via a relay. The relay will take input power from the battery and a signal to switch on from the ESP32. The output shaft will hold the container of food. The container will have a magnet on the part of the food container that rotates so that a sensor can detect when it rotates to ensure that the food actually dispensed.

Possible Motor: 5V Motor at 12RPM

Possible Sensor: Hall-effect sensor of some variety
## Subsystem 3: Mobile App
The mobile app will be programmed with multiple buttons that will communicate with the wireless transmitter on the ESP32. These buttons would manually feed the fish, change the feeding schedule, and turn on/off the feeder. The app will also notify the user when food is being dispensed and when the food level in the feeder is low. The app would also be used for implementation of the camera or water quality add-on.
## Subsystem 4: AC Switching / Charging System
This subsystem will consist of an IC that will be used to switch between AC power and battery power and another IC to control the charging of the battery. The battery would be a LiPo battery that is used as a backup to AC wall power. When AC power is restored, the charge controller will calculate how much charge is needed to put 100% charge in the battery. When AC power is available, the unit will use AC power. The battery will solely be for a backup.

Possible Implementation: One IC to control the charge and one IC to implement switching different sources, a battery, and an input port such as USB-C.
# Criterion For Success
- Manual feeding via button on feeder and in app works.
- Magnetic sensor detects that the food actually dispensed into the tank.
- App successfully notifies the user that the food was dispensed.
- When scheduling feeding times using the app, the food is dispensed at the specified times.
- When no AC power from the wall is detected, the feeder switches to battery power.

Healthy Chair

Ryan Chen, Alan Tokarsky, Tod Wang

Healthy Chair

Featured Project

Team Members:

- Wang Qiuyu (qiuyuw2)

- Ryan Chen (ryanc6)

- Alan Torkarsky(alanmt2)

## Problem

The majority of the population sits for most of the day, whether it’s students doing homework or

employees working at a desk. In particular, during the Covid era where many people are either

working at home or quarantining for long periods of time, they tend to work out less and sit

longer, making it more likely for people to result in obesity, hemorrhoids, and even heart

diseases. In addition, sitting too long is detrimental to one’s bottom and urinary tract, and can

result in urinary urgency, and poor sitting posture can lead to reduced blood circulation, joint

and muscle pain, and other health-related issues.

## Solution

Our team is proposing a project to develop a healthy chair that aims at addressing the problems

mentioned above by reminding people if they have been sitting for too long, using a fan to cool

off the chair, and making people aware of their unhealthy leaning posture.

1. It uses thin film pressure sensors under the chair’s seat to detect the presence of a user,

and pressure sensors on the chair’s back to detect the leaning posture of the user.

2. It uses a temperature sensor under the chair’s seat, and if the seat’s temperature goes

beyond a set temperature threshold, a fan below will be turned on by the microcontroller.

3. It utilizes an LCD display with programmable user interface. The user is able to input the

duration of time the chair will alert the user.

4. It uses a voice module to remind the user if he or she has been sitting for too long. The

sitting time is inputted by the user and tracked by the microcontroller.

5. Utilize only a voice chip instead of the existing speech module to construct our own

voice module.

6. The "smart" chair is able to analyze the situation that the chair surface temperature

exceeds a certain temperature within 24 hours and warns the user about it.

## Solution Components

## Signal Acquisition Subsystem

The signal acquisition subsystem is composed of multiple pressure sensors and a temperature

sensor. This subsystem provides all the input signals (pressure exerted on the bottom and the

back of the chair, as well as the chair’s temperature) that go into the microcontroller. We will be

using RP-C18.3-ST thin film pressure sensors and MLX90614-DCC non-contact IR temperature

sensor.

## Microcontroller Subsystem

In order to achieve seamless data transfer and have enough IO for all the sensors we will use

two ATMEGA88A-PU microcontrollers. One microcontroller is used to take the inputs and

serves as the master, and the second one controls the outputs and acts as the slave. We will

use I2C communication to let the two microcontrollers talk to each other. The microcontrollers

will also be programmed with the ch340g usb to ttl converter. They will be programmed outside

the board and placed into it to avoid over cluttering the PCB with extra circuits.

The microcontroller will be in charge of processing the data that it receives from all input

sensors: pressure and temperature. Once it determines that there is a person sitting on it we

can use the internal clock to begin tracking how long they have been sitting. The clock will also

be used to determine if the person has stood up for a break. The microcontroller will also use

the readings from the temperature sensor to determine if the chair has been overheating to turn

on the fans if necessary. A speaker will tell the user to get up and stretch for a while when they

have been sitting for too long. We will use the speech module to create speech through the

speaker to inform the user of their lengthy sitting duration.

The microcontroller will also be able to relay data about the posture to the led screen for the

user. When it’s detected that the user is leaning against the chair improperly for too long from

the thin film pressure sensors on the chair back, we will flash the corresponding LEDs to notify

the user of their unhealthy sitting posture.

## Implementation Subsystem

The implementation subsystem can be further broken down into three modules: the fan module,

the speech module, and the LCD module. This subsystem includes all the outputs controlled by

the microcontroller. We will be using a MF40100V2-1000U-A99 fan for the fan module,

ISD4002-240PY voice record chip for the speech module, and Adafruit 1.54" 240x240 Wide

Angle TFT LCD Display with MicroSD - ST7789 LCD display for the OLED.

## Power Subsystem

The power subsystem converts 120V AC voltage to a lower DC voltage. Since most of the input

and output sensors, as well as the ATMEGA88A-PU microcontroller operate under a DC voltage

of around or less than 5V, we will be implementing the power subsystem that can switch

between a battery and normal power from the wall.

## Criteria for Success

-The thin film pressure sensors on the bottom of the chair are able to detect the pressure of a

human sitting on the chair

-The temperature sensor is able to detect an increase in temperature and turns the fan as

temperature goes beyond our set threshold temperature. After the temperature decreases

below the threshold, the fan is able to be turned off by the microcontroller

-The thin film pressure sensors on the back of the chair are able to detect unhealthy sitting

posture

-The outputs of the implementation subsystem including the speech, fan, and LCD modules are

able to function as described above and inform the user correctly

## Envision of Final Demo

Our final demo of the healthy chair project is an office chair with grids. The office chair’s back

holds several other pressure sensors to detect the person’s leaning posture. The pressure and

temperature sensors are located under the office chair. After receiving input time from the user,

the healthy chair is able to warn the user if he has been sitting for too long by alerting him from

the speech module. The fan below the chair’s seat is able to turn on after the chair seat’s

temperature goes beyond a set threshold temperature. The LCD displays which sensors are

activated and it also receives the user’s time input.

Project Videos